direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: S3×C22.D4, C4⋊C4⋊27D6, C22⋊C4⋊30D6, D6.44(C2×D4), (C22×C4)⋊40D6, D6⋊C4⋊26C22, (C2×D4).161D6, C22.43(S3×D4), C6.81(C22×D4), D6.39(C4○D4), C23.9D6⋊29C2, D6.D4⋊25C2, (C2×C12).69C23, (C2×C6).196C24, C4⋊Dic3⋊38C22, (C22×S3).96D4, Dic3⋊C4⋊21C22, (C22×C12)⋊38C22, (C6×D4).134C22, C23.35(C22×S3), (C22×C6).31C23, (C2×D12).155C22, C22.D12⋊19C2, C23.28D6⋊20C2, C6.D4⋊28C22, C23.23D6⋊14C2, (S3×C23).56C22, C22.217(S3×C23), (C22×S3).256C23, (C2×Dic3).243C23, (C22×Dic3)⋊45C22, (S3×C4⋊C4)⋊31C2, (C2×S3×D4).8C2, C2.54(C2×S3×D4), (S3×C22×C4)⋊23C2, (S3×C2×C4)⋊70C22, C2.59(S3×C4○D4), (C2×C6).57(C2×D4), (S3×C22⋊C4)⋊10C2, (C3×C4⋊C4)⋊23C22, C6.171(C2×C4○D4), C3⋊4(C2×C22.D4), (C2×C4).60(C22×S3), (C3×C22⋊C4)⋊19C22, (C3×C22.D4)⋊4C2, (C2×C3⋊D4).46C22, SmallGroup(192,1211)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 944 in 342 conjugacy classes, 111 normal (39 characteristic)
C1, C2, C2 [×2], C2 [×10], C3, C4 [×10], C22, C22 [×2], C22 [×30], S3 [×4], S3 [×3], C6, C6 [×2], C6 [×3], C2×C4, C2×C4 [×4], C2×C4 [×23], D4 [×8], C23 [×2], C23 [×17], Dic3 [×5], C12 [×5], D6 [×8], D6 [×17], C2×C6, C2×C6 [×2], C2×C6 [×5], C22⋊C4, C22⋊C4 [×2], C22⋊C4 [×9], C4⋊C4 [×2], C4⋊C4 [×6], C22×C4, C22×C4 [×12], C2×D4, C2×D4 [×7], C24 [×2], C4×S3 [×14], D12 [×2], C2×Dic3, C2×Dic3 [×4], C2×Dic3 [×2], C3⋊D4 [×4], C2×C12, C2×C12 [×4], C2×C12 [×2], C3×D4 [×2], C22×S3 [×3], C22×S3 [×4], C22×S3 [×10], C22×C6 [×2], C2×C22⋊C4 [×3], C2×C4⋊C4 [×2], C22.D4, C22.D4 [×7], C23×C4, C22×D4, Dic3⋊C4 [×4], C4⋊Dic3 [×2], D6⋊C4 [×6], C6.D4, C6.D4 [×2], C3×C22⋊C4, C3×C22⋊C4 [×2], C3×C4⋊C4 [×2], S3×C2×C4, S3×C2×C4 [×6], S3×C2×C4 [×4], C2×D12, S3×D4 [×4], C22×Dic3, C2×C3⋊D4 [×2], C22×C12, C6×D4, S3×C23 [×2], C2×C22.D4, S3×C22⋊C4, S3×C22⋊C4 [×2], C23.9D6 [×2], C22.D12, S3×C4⋊C4 [×2], D6.D4 [×2], C23.28D6, C23.23D6, C3×C22.D4, S3×C22×C4, C2×S3×D4, S3×C22.D4
Quotients:
C1, C2 [×15], C22 [×35], S3, D4 [×4], C23 [×15], D6 [×7], C2×D4 [×6], C4○D4 [×4], C24, C22×S3 [×7], C22.D4 [×4], C22×D4, C2×C4○D4 [×2], S3×D4 [×2], S3×C23, C2×C22.D4, C2×S3×D4, S3×C4○D4 [×2], S3×C22.D4
Generators and relations
G = < a,b,c,d,e,f | a3=b2=c2=d2=e4=f2=1, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, ece-1=fcf=cd=dc, de=ed, df=fd, fef=de-1 >
(1 43 22)(2 44 23)(3 41 24)(4 42 21)(5 30 40)(6 31 37)(7 32 38)(8 29 39)(9 13 47)(10 14 48)(11 15 45)(12 16 46)(17 35 27)(18 36 28)(19 33 25)(20 34 26)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 45)(14 46)(15 47)(16 48)(17 25)(18 26)(19 27)(20 28)(21 44)(22 41)(23 42)(24 43)(29 37)(30 38)(31 39)(32 40)(33 35)(34 36)
(1 9)(2 33)(3 11)(4 35)(5 36)(6 10)(7 34)(8 12)(13 43)(14 31)(15 41)(16 29)(17 21)(18 40)(19 23)(20 38)(22 47)(24 45)(25 44)(26 32)(27 42)(28 30)(37 48)(39 46)
(1 5)(2 6)(3 7)(4 8)(9 36)(10 33)(11 34)(12 35)(13 28)(14 25)(15 26)(16 27)(17 46)(18 47)(19 48)(20 45)(21 39)(22 40)(23 37)(24 38)(29 42)(30 43)(31 44)(32 41)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(2 8)(4 6)(9 36)(10 12)(11 34)(13 28)(14 16)(15 26)(17 19)(18 47)(20 45)(21 37)(23 39)(25 27)(29 44)(31 42)(33 35)(46 48)
G:=sub<Sym(48)| (1,43,22)(2,44,23)(3,41,24)(4,42,21)(5,30,40)(6,31,37)(7,32,38)(8,29,39)(9,13,47)(10,14,48)(11,15,45)(12,16,46)(17,35,27)(18,36,28)(19,33,25)(20,34,26), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,45)(14,46)(15,47)(16,48)(17,25)(18,26)(19,27)(20,28)(21,44)(22,41)(23,42)(24,43)(29,37)(30,38)(31,39)(32,40)(33,35)(34,36), (1,9)(2,33)(3,11)(4,35)(5,36)(6,10)(7,34)(8,12)(13,43)(14,31)(15,41)(16,29)(17,21)(18,40)(19,23)(20,38)(22,47)(24,45)(25,44)(26,32)(27,42)(28,30)(37,48)(39,46), (1,5)(2,6)(3,7)(4,8)(9,36)(10,33)(11,34)(12,35)(13,28)(14,25)(15,26)(16,27)(17,46)(18,47)(19,48)(20,45)(21,39)(22,40)(23,37)(24,38)(29,42)(30,43)(31,44)(32,41), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (2,8)(4,6)(9,36)(10,12)(11,34)(13,28)(14,16)(15,26)(17,19)(18,47)(20,45)(21,37)(23,39)(25,27)(29,44)(31,42)(33,35)(46,48)>;
G:=Group( (1,43,22)(2,44,23)(3,41,24)(4,42,21)(5,30,40)(6,31,37)(7,32,38)(8,29,39)(9,13,47)(10,14,48)(11,15,45)(12,16,46)(17,35,27)(18,36,28)(19,33,25)(20,34,26), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,45)(14,46)(15,47)(16,48)(17,25)(18,26)(19,27)(20,28)(21,44)(22,41)(23,42)(24,43)(29,37)(30,38)(31,39)(32,40)(33,35)(34,36), (1,9)(2,33)(3,11)(4,35)(5,36)(6,10)(7,34)(8,12)(13,43)(14,31)(15,41)(16,29)(17,21)(18,40)(19,23)(20,38)(22,47)(24,45)(25,44)(26,32)(27,42)(28,30)(37,48)(39,46), (1,5)(2,6)(3,7)(4,8)(9,36)(10,33)(11,34)(12,35)(13,28)(14,25)(15,26)(16,27)(17,46)(18,47)(19,48)(20,45)(21,39)(22,40)(23,37)(24,38)(29,42)(30,43)(31,44)(32,41), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (2,8)(4,6)(9,36)(10,12)(11,34)(13,28)(14,16)(15,26)(17,19)(18,47)(20,45)(21,37)(23,39)(25,27)(29,44)(31,42)(33,35)(46,48) );
G=PermutationGroup([(1,43,22),(2,44,23),(3,41,24),(4,42,21),(5,30,40),(6,31,37),(7,32,38),(8,29,39),(9,13,47),(10,14,48),(11,15,45),(12,16,46),(17,35,27),(18,36,28),(19,33,25),(20,34,26)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,45),(14,46),(15,47),(16,48),(17,25),(18,26),(19,27),(20,28),(21,44),(22,41),(23,42),(24,43),(29,37),(30,38),(31,39),(32,40),(33,35),(34,36)], [(1,9),(2,33),(3,11),(4,35),(5,36),(6,10),(7,34),(8,12),(13,43),(14,31),(15,41),(16,29),(17,21),(18,40),(19,23),(20,38),(22,47),(24,45),(25,44),(26,32),(27,42),(28,30),(37,48),(39,46)], [(1,5),(2,6),(3,7),(4,8),(9,36),(10,33),(11,34),(12,35),(13,28),(14,25),(15,26),(16,27),(17,46),(18,47),(19,48),(20,45),(21,39),(22,40),(23,37),(24,38),(29,42),(30,43),(31,44),(32,41)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(2,8),(4,6),(9,36),(10,12),(11,34),(13,28),(14,16),(15,26),(17,19),(18,47),(20,45),(21,37),(23,39),(25,27),(29,44),(31,42),(33,35),(46,48)])
Matrix representation ►G ⊆ GL6(𝔽13)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 1 | 12 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
5 | 8 | 0 | 0 | 0 | 0 |
10 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 8 | 0 | 0 |
0 | 0 | 5 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
5 | 0 | 0 | 0 | 0 | 0 |
10 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
2 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,12,12],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[5,10,0,0,0,0,8,8,0,0,0,0,0,0,0,5,0,0,0,0,8,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[5,10,0,0,0,0,0,8,0,0,0,0,0,0,0,12,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,2,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 6A | 6B | 6C | 6D | 6E | 6F | 12A | 12B | 12C | 12D | 12E | 12F | 12G |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 6 | 6 | 12 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 2 | 2 | 2 | 4 | 4 | 8 | 4 | 4 | 4 | 4 | 8 | 8 | 8 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D4 | D6 | D6 | D6 | D6 | C4○D4 | S3×D4 | S3×C4○D4 |
kernel | S3×C22.D4 | S3×C22⋊C4 | C23.9D6 | C22.D12 | S3×C4⋊C4 | D6.D4 | C23.28D6 | C23.23D6 | C3×C22.D4 | S3×C22×C4 | C2×S3×D4 | C22.D4 | C22×S3 | C22⋊C4 | C4⋊C4 | C22×C4 | C2×D4 | D6 | C22 | C2 |
# reps | 1 | 3 | 2 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 3 | 2 | 1 | 1 | 8 | 2 | 4 |
In GAP, Magma, Sage, TeX
S_3\times C_2^2.D_4
% in TeX
G:=Group("S3xC2^2.D4");
// GroupNames label
G:=SmallGroup(192,1211);
// by ID
G=gap.SmallGroup(192,1211);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,100,346,297,6278]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^3=b^2=c^2=d^2=e^4=f^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,e*c*e^-1=f*c*f=c*d=d*c,d*e=e*d,d*f=f*d,f*e*f=d*e^-1>;
// generators/relations